In recent years, aerial swarm technology has developed rapidly. In order to accomplish a fully autonomous aerial swarm, a key technology is decentralized and distributed collaborative SLAM (CSLAM) for aerial swarms, which estimates the relative pose and the consistent global trajectories. In this paper, we propose $D^2$SLAM: a decentralized and distributed ($D^2$) collaborative SLAM algorithm. This algorithm has high local accuracy and global consistency, and the distributed architecture allows it to scale up. $D^2$SLAM covers swarm state estimation in two scenarios: near-field state estimation for high real-time accuracy at close range and far-field state estimation for globally consistent trajectories estimation at the long-range between UAVs. Distributed optimization algorithms are adopted as the backend to achieve the $D^2$ goal. $D^2$SLAM is robust to transient loss of communication, network delays, and other factors. Thanks to the flexible architecture, $D^2$SLAM has the potential of applying in various scenarios.
translated by 谷歌翻译
Existing object detection methods are bounded in a fixed-set vocabulary by costly labeled data. When dealing with novel categories, the model has to be retrained with more bounding box annotations. Natural language supervision is an attractive alternative for its annotation-free attributes and broader object concepts. However, learning open-vocabulary object detection from language is challenging since image-text pairs do not contain fine-grained object-language alignments. Previous solutions rely on either expensive grounding annotations or distilling classification-oriented vision models. In this paper, we propose a novel open-vocabulary object detection framework directly learning from image-text pair data. We formulate object-language alignment as a set matching problem between a set of image region features and a set of word embeddings. It enables us to train an open-vocabulary object detector on image-text pairs in a much simple and effective way. Extensive experiments on two benchmark datasets, COCO and LVIS, demonstrate our superior performance over the competing approaches on novel categories, e.g. achieving 32.0% mAP on COCO and 21.7% mask mAP on LVIS. Code is available at: https://github.com/clin1223/VLDet.
translated by 谷歌翻译
我们提出了一种称为独角兽的统一方法,可以使用相同的模型参数同时使用单个网络解决四个跟踪问题(SOT,MOT,VOS,MOTS)。由于对象跟踪问题本身的定义零散,因此开发了大多数现有的跟踪器来解决任务的单个或一部分,并过分地对特定任务的特征进行了专业化。相比之下,Unicorn提供了一个统一的解决方案,在所有跟踪任务中采用相同的输入,骨干,嵌入和头部。我们第一次完成了跟踪网络体系结构和学习范式的巨大统一。Unicorn在8个跟踪数据集中的特定于任务特定的对应物(包括Lasot,TrackingNet,Mot17,BDD100K,Davis16-17,MOTS20和BDD100K MOT)在PAR上或更好的对应物。我们认为,独角兽将是朝着一般视觉模型迈出的坚实一步。代码可从https://github.com/masterbin-iiau/unicorn获得。
translated by 谷歌翻译
本文介绍了一个多模式的室内轨道图数据集,Odombeyondvision,具有不同频谱的多个传感器,并使用不同的移动平台收集。Odombeyondvision不仅包含传统的导航传感器,例如IMUS,机械激光镜,RGBD摄像头,还包括几个新兴传感器,例如单芯片MMWave Radar,LWIR热相机和固态激光雷达。在无人机,UGV和手持式平台上的上述传感器中,我们分别记录了各种室内场景和不同照明条件的多模式探光数据及其运动轨迹。我们释放了示例雷达,雷达惯性和热惯性循环仪的实现,以证明其未来工作的结果,以对其进行比较和改进。包括工具包和文档在内的完整数据集可公开可用:https://github.com/maps-lab/odombeyondvision。
translated by 谷歌翻译
参照视频对象分割(R-VOS)是一个新兴的跨通道任务,其目的是分割目标对象中的所有的视频帧称为一个语言表达式。在这项工作中,我们提出了一个简单并在变压器建成统一的框架,称为ReferFormer。它认为在语言查询,并直接参加到视频帧中的最相关的区域。具体而言,我们引入一个小套空调的语言作为输入Transformer对象的查询。通过这种方式,所有的查询有义务仅发现指的对象。他们最终都转化为动态的内核,其捕捉的关键对象级信息,并发挥卷积过滤器的作用,生成特征地图分割口罩。对象跟踪通过连接在帧之间相应的查询自然实现。这种机制极大地简化了管道和终端到终端的框架是从以前的方法不同显著。在REF-YouTube的VOS,REF-DAVIS17大量的实验,A2D-句子和JHMDB-句显示ReferFormer的有效性。上REF-YouTube的VOS,参见-前达到55.6J&F与RESNET-50主链而不花哨,这超过了8.4点之前的状态的最先进的性能。此外,与强斯文 - 大型骨干,ReferFormer实现了所有现有的方法中最好的J&62.4 F。歼&F度量可以通过采用一个简单的后处理技术来进一步升压到63.3。此外,我们分别显示55.0地图和43.7地图上A2D-句andJHMDB-句令人印象深刻的结果,这显著优于大幅度以前的方法。代码是公开的,在https://github.com/wjn922/ReferFormer。
translated by 谷歌翻译
多目标跟踪(MOT)的典型管道是使用探测器进行对象本地化,并在重新识别(RE-ID)之后进行对象关联。该管道通过对象检测和重新ID的最近进展部分而部分地激励,并且部分地通过现有的跟踪数据集中的偏差激励,其中大多数物体倾向于具有区分外观和RE-ID模型足以建立关联。为了响应这种偏见,我们希望重新强调多目标跟踪的方法也应该在对象外观不充分辨别时起作用。为此,我们提出了一个大型数据集,用于多人跟踪,人类具有相似的外观,多样化的运动和极端关节。由于数据集包含主要组跳舞视频,我们将其命名为“DanceTrack”。我们预计DanceTrack可以提供更好的平台,以开发更多的MOT算法,这些算法依赖于视觉识别并更依赖于运动分析。在我们的数据集上,我们在数据集上基准测试了几个最先进的追踪器,并在与现有基准测试中遵守DanceTrack的显着性能下降。 DataSet,项目代码和竞争服务器播放:\ url {https://github.com/danceTrack}。
translated by 谷歌翻译
We present DetCo, a simple yet effective self-supervised approach for object detection. Unsupervised pre-training methods have been recently designed for object detection, but they are usually deficient in image classification, or the opposite. Unlike them, DetCo transfers well on downstream instance-level dense prediction tasks, while maintaining competitive image-level classification accuracy. The advantages are derived from (1) multi-level supervision to intermediate representations, (2) contrastive learning between global image and local patches. These two designs facilitate discriminative and consistent global and local representation at each level of feature pyramid, improving detection and classification, simultaneously.Extensive experiments on VOC, COCO, Cityscapes, and ImageNet demonstrate that DetCo not only outperforms recent methods on a series of 2D and 3D instance-level detection tasks, but also competitive on image classification. For example, on ImageNet classification, DetCo is 6.9% and 5.0% top-1 accuracy better than InsLoc and DenseCL, which are two contemporary works designed for object detection. Moreover, on COCO detection, DetCo is 6.9 AP better than SwAV with Mask R-CNN C4. Notably, DetCo largely boosts up Sparse R-CNN, a recent strong detector, from 45.0 AP to 46.5 AP (+1.5 AP), establishing a new SOTA on COCO. Code is available.
translated by 谷歌翻译
In this paper, we introduce an anchor-box free and single shot instance segmentation method, which is conceptually simple, fully convolutional and can be used by easily embedding it into most off-the-shelf detection methods. Our method, termed PolarMask, formulates the instance segmentation problem as predicting contour of instance through instance center classification and dense distance regression in a polar coordinate. Moreover, we propose two effective approaches to deal with sampling high-quality center examples and optimization for dense distance regression, respectively, which can significantly improve the performance and simplify the training process. Without any bells and whistles, PolarMask achieves 32.9% in mask mAP with single-model and single-scale training/testing on the challenging COCO dataset.For the first time, we show that the complexity of instance segmentation, in terms of both design and computation complexity, can be the same as bounding box object detection and this much simpler and flexible instance segmentation framework can achieve competitive accuracy. We hope that the proposed PolarMask framework can serve as a fundamental and strong baseline for single shot instance segmentation task. Code is available at: github.com/xieenze/PolarMask.
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译